Nomenclature: Difference between revisions

From Atomix
Rolf (talk | contribs)
No edit summary
Rolf (talk | contribs)
No edit summary
Line 86: Line 86:
| <math>P</math>
| <math>P</math>
| The production of turbulence kinetic energy, in a steady uniform stratified shear flow, equals the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy through viscous friction, <math>\varepsilon</math> and the production of potential energy by the buoyancy flux, <math>B=-\frac{g}{\rho} \overline{\rho'w'} </math>.
| The production of turbulence kinetic energy, in a steady uniform stratified shear flow, equals the product of the Reynolds stress and the shear, for example <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} </math> . The production is balanced by the rate of dissipation turbulence kinetic energy through viscous friction, <math>\varepsilon</math> and the production of potential energy by the buoyancy flux, <math>B=-\frac{g}{\rho} \overline{\rho'w'} </math>.
| <math>P = \varepsilon + B</math>  
| <math>P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B</math>  
| <math>\mathrm{m^2\, s^{-3}} = \mathrm{W\, kg^{-1}}</math>
| <math>\mathrm{m^2\, s^{-3}} = \mathrm{W\, kg^{-1}}</math>
|-
|-

Revision as of 20:46, 10 December 2021


Background (total) velocity

Turbulence properties

Fluid properties and background gradients for turbulence calculations

Theoretical Length and Time Scales

Turbulence Spectrum