Processing your ADCP data using structure function techniques
From Atomix
To calculate the dissipation rate at a specific range bin and a specific time ensemble:

- Extract or compute the along-beam bin center separation [<math>r_0</math>] based on the instrument geometry
- Calculate the along-beam velocity fluctuation time-series in each bin <math>n</math>, where [<math>v’(n, t)</math>] from the along-beam velocity data that has met the QC criteria (i.e. the data in Level 2 of the netcdf file)
- Select the maximum distance (<math>r_{max}</math>) over which to compute the structure function based on conditions of the flow (e.g., expected max overturn). The corresponding number of bins is [<math>n_{\text{rmax}} = r_{max} / r_0</math>]
- Calculate the structure function <math>D_{ll}</math> for all possible bin separations <math>\delta</math> within <math>r_{max}</math> using either a bin-centred difference scheme or a forward-difference scheme.
- Perform a regression of <math>D_{ll}(n,\delta)</math> against <math>(\delta r_0)^{2/3}</math> for the appropriate range of bins and <math>\delta</math>r0 separation distances. Be aware of special considerations for forward-difference, center-difference schemes.
- Use the coefficient <math>a_1</math> to calculate <math>\varepsilon</math> as
<math>\varepsilon = \left(\frac{a_1}{C_2}\right)^{2/3}</math>
where <math>C_2</math> is an empirical constant, typically taken as 2.0 or 2.1.
Next step: Apply quality-control on dissipation rates (QA2)
Previous step: Apply quality-control on velocity time series data (QA1)
Return to ADCP Flow Chart front page
