Kolmogorov length scale: Difference between revisions

From Atomix
Rolf (talk | contribs)
No edit summary
No edit summary
Line 1: Line 1:
{{netcdfGlossary
{{DefineConcept
|parameter_name=Kolmogorov length scale
|parameter_name=Kolmogorov length scale
|symbol=<math>\eta</math>
|description=Kolmogorov length scale <math>\eta</math>
|description=Kolmogorov length scale
|instrument_type=
|standard_name=Kolmogorov_length_scale
|units=m
|cf-compliant=No
|glossary_type=Length and time scales
}}
}}
<math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
<math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math>
where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.
where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.

Revision as of 13:23, 14 October 2021


Short definition of Kolmogorov length scale (Kolmogorov length scale)
Kolmogorov length scale η

This is the common definition for Kolmogorov length scale, but other definitions maybe discussed within the wiki.

{{#default_form:DefineConcept}} {{#arraymap:|,|x||}}

η=(ν3ε)1/4 where ν is the kinematic viscosity of the fluid and ε is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.