Segmenting datasets: Difference between revisions

From Atomix
m Fixed labels for figures
Line 14: Line 14:
This segmenting step dictates the minimum [[Burst sampling|burst]] duration when setting up your equipment. The act of chopping a time series into smaller subsets, i.e., segments, is effectively a form of low-pass (box-car) filtering. The length of the [[Segmenting datasets|segment]] in time is usually a more important consideration than [[Detrending time series|detrending the time series]] when estimating <math>\varepsilon</math> from the [[Velocity inertial subrange model|inertial subrange]] of the final spectra.  
This segmenting step dictates the minimum [[Burst sampling|burst]] duration when setting up your equipment. The act of chopping a time series into smaller subsets, i.e., segments, is effectively a form of low-pass (box-car) filtering. The length of the [[Segmenting datasets|segment]] in time is usually a more important consideration than [[Detrending time series|detrending the time series]] when estimating <math>\varepsilon</math> from the [[Velocity inertial subrange model|inertial subrange]] of the final spectra.  


The shorter the segment, the higher the temporal resolution of the final <math>\varepsilon</math> time series, and the more likely the segment will be [[Stationarity|stationary]]. The segment must remain sufficiently long such that the lowest wavenumber (frequencies) of the [[Velocity inertial subrange model|inertial subrange]] are retained by the [[Compute the spectra|computed spectra]]. This is particularly important when measurement noise drowns the highest wavenumber (frequencies) of the [[Velocity inertial subrange model|inertial subrange]]. Thus, using too short segments may inadvertently render the spectra unusable for deriving  <math>\varepsilon</math> from the [[Velocity inertial subrange model|inertial subrange]] by virtue of no longer resolving this subrange as shown in  ([[#fftlength|Fig. 3]]).
The shorter the segment, the higher the temporal resolution of the final <math>\varepsilon</math> time series, and the more likely the segment will be [[Stationarity|stationary]]. The segment must remain sufficiently long such that the lowest wavenumber (frequencies) of the [[Velocity inertial subrange model|inertial subrange]] are retained by the [[Compute the spectra|computed spectra]]. This is particularly important when measurement noise drowns the highest wavenumber (frequencies) of the [[Velocity inertial subrange model|inertial subrange]]. Thus, using too short segments may inadvertently render the spectra unusable for deriving  <math>\varepsilon</math> from the [[Velocity inertial subrange model|inertial subrange]] by virtue of no longer resolving this subrange as shown in  ([[#fftlength|Fig. 1]]).
 
[[File:ADV_fft_length.png|none|thumbnail|500px|Fig.1 Contours represent the log of the  <span id="fftlength">fft-length required to resolve the non-dimensional wavenumber [rad/m] indicated in each panel's title.  The inertial subrange ends at approximately <math>\hat{k}L_k\approx0.1</math> (or <math>kL_k\approx0.015</math> in cpm), and so panel (c) denotes the fft-length that resolves the end of the inertial subrange i.e., the beginning of the viscous subrange. The fft-length must be at least 10x longer (see b), preferably 50x (panel c) given the low number of spectral observations at the lowest frequencies (wavenumbers)]]


== Recommendations==
== Recommendations==
A good rule of thumb for tidally-influenced environments is 5 to 15 min segments, but this may be shorter in certain energetic and fast-moving flows ([[#fastepsi|Fig. 1]]) and longer in less energetic environments ([[#lowepsi|Fig.2]]).  The final segment length is partly a function of the fft-length and the desired statistical significance (degrees of freedom) of the final spectra.
A good rule of thumb for tidally-influenced environments is 5 to 15 min segments, but this may be shorter in certain energetic and fast-moving flows ([[#fastepsi|Fig. 2]]) and longer in less energetic environments ([[#lowepsi|Fig.3]]).  The final segment length is partly a function of the fft-length and the desired statistical significance (degrees of freedom) of the final spectra.


===Minimum fft-length===
===Minimum fft-length===
[[#fftlength|Fig. 3]] provides a guide to the fft-length required for resolving different subrange as a function of the speed past the sensor, and <math>\varepsilon</math>.  For instance, an fft-length of 4 s would resolve one decade of the inertial subrange at speeds past the sensor of 0.5 m/s and <math>\varepsilon\sim10^{-7}</math> W/kg. Longer segments would be required for slower flows or lower <math>\varepsilon</math>.  At <math>\varepsilon\approx10^{-9}</math> W/kg, one decade of the inertial subrange would be resolved with an fft-length longer than 10s provided the speed was faster than 0.5 m/s.  
[[#fftlength|Fig. 1]] provides a guide to the fft-length required for resolving different subrange as a function of the speed past the sensor, and <math>\varepsilon</math>.  For instance, an fft-length of 4 s would resolve one decade of the inertial subrange at speeds past the sensor of 0.5 m/s and <math>\varepsilon\sim10^{-7}</math> W/kg. Longer segments would be required for slower flows or lower <math>\varepsilon</math>.  At <math>\varepsilon\approx10^{-9}</math> W/kg, one decade of the inertial subrange would be resolved with an fft-length longer than 10s provided the speed was faster than 0.5 m/s.  


Because the inertial subrange may be contaminated at the highest wavenumbers by instrument noise, we suggest using longer segments than the minimum shown in [[#fftlength|Fig. 3b]]. This strategy also enables having a larger number of spectral observations to fit over the inertial subrange given the spectral resolution also depends on the fft-length.
Because the inertial subrange may be contaminated at the highest wavenumbers by instrument noise, we suggest using longer segments than the minimum shown in [[#fftlength|Fig. 1b]]. This strategy also enables having a larger number of spectral observations to fit over the inertial subrange given the spectral resolution also depends on the fft-length.


===Minimum segment-length===
===Minimum segment-length===
Line 29: Line 31:
{{FontColor|fg=white|bg=red|text= Are the peaks in the MAVS data vortex shedding from the rings. Check the motion sensors onboard?}}
{{FontColor|fg=white|bg=red|text= Are the peaks in the MAVS data vortex shedding from the rings. Check the motion sensors onboard?}}


[[File:Segment_anisotropy.png|left|thumbnail|350px|Fig. 1: Example theoretical velocity spectra for different  <math>\varepsilon</math> with the empirical limit <math>\hat{k}L_k\sim0.1</math>  denoted by the diamonds (<math>\hat{k}</math> is in rad/m). The inertial subrange extends to smaller wavenumber <math>k</math> [cpm] as <math>\varepsilon</math> increases. The lowest frequency resolved by a spectra is the inverse of the fft-length used when computing the spectra. The colored lines are spectral observations from a dataset with <span id="fastepsi">fast speeds and large</span> <math>\varepsilon</math>. In this example, we used relatively short segments (128s) to estimate the spectra from fft-length of 32 s (2048 samples @ 64 Hz). The impact of [[Velocity inertial subrange model#anisotropy|turbulence anisotropy]] is also visible through the flattening of the spectra around 1 cpm. The secondary x-axis show the corresponding frequencies for a range of mean speeds past the sensors]]
[[File:Segment_anisotropy.png|left|thumbnail|350px|Fig. 2: Example theoretical velocity spectra for different  <math>\varepsilon</math> with the empirical limit <math>\hat{k}L_k\sim0.1</math>  denoted by the diamonds (<math>\hat{k}</math> is in rad/m). The inertial subrange extends to smaller wavenumber <math>k</math> [cpm] as <math>\varepsilon</math> increases. The lowest frequency resolved by a spectra is the inverse of the fft-length used when computing the spectra. The colored lines are spectral observations from a dataset with <span id="fastepsi">fast speeds and large</span> <math>\varepsilon</math>. In this example, we used relatively short segments (128s) to estimate the spectra from fft-length of 32 s (2048 samples @ 64 Hz). The impact of [[Velocity inertial subrange model#anisotropy|turbulence anisotropy]] is also visible through the flattening of the spectra around 1 cpm. The secondary x-axis show the corresponding frequencies for a range of mean speeds past the sensors]]
 
[[File:SegmentAnisotropyLowE.png|center|thumbnail|350px|Fig. 3: Same as Fig 1 but for a different  dataset with <span id="lowepsi">low speeds and low</span> <math>\varepsilon</math>, requiring the use of relatively long segments (1024s) to estimate the spectra from fft-length of 512 s (4096 samples @ 8 Hz).]]


[[File:SegmentAnisotropyLowE.png|center|thumbnail|350px|Fig. 2: Same as Fig 1 but for a different  dataset with <span id="lowepsi">low speeds and low</span> <math>\varepsilon</math>, requiring the use of relatively long segments (1024s) to estimate the spectra from fft-length of 512 s (4096 samples @ 8 Hz).]]


[[File:ADV_fft_length.png|none|thumbnail|500px|Fig.3 Contours represent the log of the  <span id="fftlength">fft-length required to resolve the non-dimensional wavenumber [rad/m] indicated in each panel's title.  The inertial subrange ends at approximately <math>\hat{k}L_k\approx0.1</math> (or <math>kL_k\approx0.015</math> in cpm), and so panel (c) denotes the fft-length that resolves the end of the inertial subrange i.e., the beginning of the viscous subrange. The fft-length must be at least 10x longer (see b), preferably 50x (panel c) given the low number of spectral observations at the lowest frequencies (wavenumbers)]]
----
----
Return to [[Preparing_quality-controlled_velocities]]
Return to [[Preparing_quality-controlled_velocities]]

Revision as of 00:06, 11 July 2022


Once the raw observations have been quality-controlled, then you must split the time series into shorter segments by considering:

Considerations

Measurements are typically collected in the following two ways:

  • continuously, or in such long bursts that they can be considered continuous
  • short bursts that are typically at most 2-3x the expected largest turbulence time scales (e.g., 10 min in ocean environments)

This segmenting step dictates the minimum burst duration when setting up your equipment. The act of chopping a time series into smaller subsets, i.e., segments, is effectively a form of low-pass (box-car) filtering. The length of the segment in time is usually a more important consideration than detrending the time series when estimating [math]\displaystyle{ \varepsilon }[/math] from the inertial subrange of the final spectra.

The shorter the segment, the higher the temporal resolution of the final [math]\displaystyle{ \varepsilon }[/math] time series, and the more likely the segment will be stationary. The segment must remain sufficiently long such that the lowest wavenumber (frequencies) of the inertial subrange are retained by the computed spectra. This is particularly important when measurement noise drowns the highest wavenumber (frequencies) of the inertial subrange. Thus, using too short segments may inadvertently render the spectra unusable for deriving [math]\displaystyle{ \varepsilon }[/math] from the inertial subrange by virtue of no longer resolving this subrange as shown in (Fig. 1).

Fig.1 Contours represent the log of the fft-length required to resolve the non-dimensional wavenumber [rad/m] indicated in each panel's title. The inertial subrange ends at approximately [math]\displaystyle{ \hat{k}L_k\approx0.1 }[/math] (or [math]\displaystyle{ kL_k\approx0.015 }[/math] in cpm), and so panel (c) denotes the fft-length that resolves the end of the inertial subrange i.e., the beginning of the viscous subrange. The fft-length must be at least 10x longer (see b), preferably 50x (panel c) given the low number of spectral observations at the lowest frequencies (wavenumbers)

Recommendations

A good rule of thumb for tidally-influenced environments is 5 to 15 min segments, but this may be shorter in certain energetic and fast-moving flows (Fig. 2) and longer in less energetic environments (Fig.3). The final segment length is partly a function of the fft-length and the desired statistical significance (degrees of freedom) of the final spectra.

Minimum fft-length

Fig. 1 provides a guide to the fft-length required for resolving different subrange as a function of the speed past the sensor, and [math]\displaystyle{ \varepsilon }[/math]. For instance, an fft-length of 4 s would resolve one decade of the inertial subrange at speeds past the sensor of 0.5 m/s and [math]\displaystyle{ \varepsilon\sim10^{-7} }[/math] W/kg. Longer segments would be required for slower flows or lower [math]\displaystyle{ \varepsilon }[/math]. At [math]\displaystyle{ \varepsilon\approx10^{-9} }[/math] W/kg, one decade of the inertial subrange would be resolved with an fft-length longer than 10s provided the speed was faster than 0.5 m/s.

Because the inertial subrange may be contaminated at the highest wavenumbers by instrument noise, we suggest using longer segments than the minimum shown in Fig. 1b. This strategy also enables having a larger number of spectral observations to fit over the inertial subrange given the spectral resolution also depends on the fft-length.

Minimum segment-length

The final segment length may be larger than the fft-length depending if you use block- or band-averaging for computing the spectra Refer to textbook here?.

Are the peaks in the MAVS data vortex shedding from the rings. Check the motion sensors onboard?

Fig. 2: Example theoretical velocity spectra for different [math]\displaystyle{ \varepsilon }[/math] with the empirical limit [math]\displaystyle{ \hat{k}L_k\sim0.1 }[/math] denoted by the diamonds ([math]\displaystyle{ \hat{k} }[/math] is in rad/m). The inertial subrange extends to smaller wavenumber [math]\displaystyle{ k }[/math] [cpm] as [math]\displaystyle{ \varepsilon }[/math] increases. The lowest frequency resolved by a spectra is the inverse of the fft-length used when computing the spectra. The colored lines are spectral observations from a dataset with fast speeds and large [math]\displaystyle{ \varepsilon }[/math]. In this example, we used relatively short segments (128s) to estimate the spectra from fft-length of 32 s (2048 samples @ 64 Hz). The impact of turbulence anisotropy is also visible through the flattening of the spectra around 1 cpm. The secondary x-axis show the corresponding frequencies for a range of mean speeds past the sensors
Fig. 3: Same as Fig 1 but for a different dataset with low speeds and low [math]\displaystyle{ \varepsilon }[/math], requiring the use of relatively long segments (1024s) to estimate the spectra from fft-length of 512 s (4096 samples @ 8 Hz).



Return to Preparing_quality-controlled_velocities