Kolmogorov length scale: Difference between revisions
From Atomix
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
<math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math> | <math>\eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}</math> | ||
where <math>\nu</math> is the kinematic viscosity of the fluid and <math>\varepsilon</math> is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations. |
Revision as of 20:07, 13 July 2021
Short name | Symbol | Standard name | Description | Units | CF compliant |
---|---|---|---|---|---|
Kolmogorov length scale | [math]\displaystyle{ \eta }[/math] | Kolmogorov_length_scale | Kolmogorov length scale | m | No |
This is a mathematical definition for Kolmogorov length scale, along with the NetCDF attributes.
Additional Information
[math]\displaystyle{ \eta=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4} }[/math]
where [math]\displaystyle{ \nu }[/math] is the kinematic viscosity of the fluid and [math]\displaystyle{ \varepsilon }[/math] is the rate of dissipation of turbulence kinetic energy by viscous friction. It is the smallest length scale before viscous effects smoothen the velocity fluctuations.