Segmenting datasets: Difference between revisions
mNo edit summary |
|||
Line 14: | Line 14: | ||
This segmenting step dictates the minimum [[Burst sampling|burst]] duration when setting up your equipment. The act of chopping a time series into smaller subsets, i.e., segments, is effectively a form of low-pass (box-car) filtering. The length of the [[Segmenting datasets|segment]] in time is usually a more important consideration than [[Detrending time series|detrending the time series]] when estimating <math>\varepsilon</math> from the [[Velocity inertial subrange model|inertial subrange]] of the final spectra. | This segmenting step dictates the minimum [[Burst sampling|burst]] duration when setting up your equipment. The act of chopping a time series into smaller subsets, i.e., segments, is effectively a form of low-pass (box-car) filtering. The length of the [[Segmenting datasets|segment]] in time is usually a more important consideration than [[Detrending time series|detrending the time series]] when estimating <math>\varepsilon</math> from the [[Velocity inertial subrange model|inertial subrange]] of the final spectra. | ||
[[File:Short timeseries.png|left|thumb| | [[File:Short timeseries.png|left|thumb|300px|512 s segment of the measured velocities after applying different [[Detrending time series|detrending methods]]]] | ||
[[File:Short_spectra.png|center|thumb| | [[File:Short_spectra.png|center|thumb|300px|Example velocity spectra of the short 512 s of records before and after different detrending techniques applied to the original 6h time series. The impact of the detrending method can be seen at the lowest frequencies only]] | ||
Revision as of 20:19, 10 July 2022
Once the raw observations have been quality-controlled, then you must split the time series into shorter segments by considering:
- Time and length scales of turbulence
- Stationarity of the segment and Taylor's frozen turbulence hypothesis
- Required statistical significance of the resulting spectra (important if you need to remove motion-induced contamination from the spectra)
Considerations
Measurements are typically collected in the following two ways:
- continuously, or in such long bursts that they can be considered continuous
- short bursts that are typically at most 2-3x the expected largest turbulence time scales (e.g., 10 min in ocean environments)
This segmenting step dictates the minimum burst duration when setting up your equipment. The act of chopping a time series into smaller subsets, i.e., segments, is effectively a form of low-pass (box-car) filtering. The length of the segment in time is usually a more important consideration than detrending the time series when estimating [math]\displaystyle{ \varepsilon }[/math] from the inertial subrange of the final spectra.
The shorter the segment, the higher the temporal resolution of the final [math]\displaystyle{ \varepsilon }[/math] time series, and the more likely the segment will be stationary. However, the spectrum's lowest resolved frequency and final resolution depend on the duration of the signal used to construct the spectrum. Therefore, the segment must remain sufficiently long such that the lowest wavenumber (frequencies) of the inertial subrange are retained by the spectra. This is particularly important when measurement noise drowns the highest wavenumber (frequencies) of the inertial subrange. Thus, using too short segments may inadvertently render the spectra unusable for deriving [math]\displaystyle{ \varepsilon }[/math] from the inertial subrange by virtue of no longer resolving this subrange.
Recommendations
A good rule of thumb for tidally-influenced environments is 5 to 15 min segments, but this may be shorter in certain energetic and fast-moving flows (Fig. 1) and longer in less energetic environments (Fig.2). Are the peaks in the MAVS data vortex shedding from the rings. Check the motion sensors onboard?
Return to Preparing_quality-controlled_velocities