Segmenting datasets: Difference between revisions
mNo edit summary |
|||
Line 15: | Line 15: | ||
The shorter the segment, the higher the temporal resolution of the final <math>\varepsilon</math> time series, and the more likely the segment will be [[Stationarity|stationary]]. However, the spectrum's lowest resolved frequency and final resolution are the inverse of the fft-length, i.e., the duration of the signal used to construct the spectrum. Therefore, the segment must remain sufficiently long such that the lowest wavenumber (frequencies) of the [[Velocity inertial subrange model|inertial subrange]] are retained by the spectra. This is particularly important when measurement noise drowns the highest wavenumber (frequencies) of the [[Velocity inertial subrange model|inertial subrange]]. Thus, using too short segments may inadvertently render the spectra unusable for deriving <math>\varepsilon</math> from the [[Velocity inertial subrange model|inertial subrange]] by virtue of no longer resolving this subrange as shown in | The shorter the segment, the higher the temporal resolution of the final <math>\varepsilon</math> time series, and the more likely the segment will be [[Stationarity|stationary]]. However, the spectrum's lowest resolved frequency and final resolution are the inverse of the fft-length, i.e., the duration of the signal used to construct the spectrum. Therefore, the segment must remain sufficiently long such that the lowest wavenumber (frequencies) of the [[Velocity inertial subrange model|inertial subrange]] are retained by the spectra. This is particularly important when measurement noise drowns the highest wavenumber (frequencies) of the [[Velocity inertial subrange model|inertial subrange]]. Thus, using too short segments may inadvertently render the spectra unusable for deriving <math>\varepsilon</math> from the [[Velocity inertial subrange model|inertial subrange]] by virtue of no longer resolving this subrange as shown in ([[#fftlength|Fig. 3]]) | ||
== Recommendations== | == Recommendations== | ||
Line 28: | Line 27: | ||
[[File:SegmentAnisotropyLowE.png|center|thumbnail|350px|Fig. 2: Same as Fig 1 but for a different dataset with <span id="lowepsi">low speeds and low</span> <math>\varepsilon</math>, requiring the use of relatively long segments (1024s) to estimate the spectra from fft-length of 512 s (4096 samples @ 8 Hz).]] | [[File:SegmentAnisotropyLowE.png|center|thumbnail|350px|Fig. 2: Same as Fig 1 but for a different dataset with <span id="lowepsi">low speeds and low</span> <math>\varepsilon</math>, requiring the use of relatively long segments (1024s) to estimate the spectra from fft-length of 512 s (4096 samples @ 8 Hz).]] | ||
[[File:ADV_fft_length.png|none|thumbnail|500px|Fig.3 Contours represent the log of the <span id="fftlength">fft-length required to resolve the non-dimensional wavenumber [rad/m] indicated in each panel's title. The inertial subrange ends at approximately <math>\hat{k}L_k\approx0.1</math> (or <math>kL_k\approx0.015</math> in cpm), and so panel (c) denotes the fft-length that resolves the end of the inertial subrange i.e., the beginning of the viscous subrange. The fft-length must be at least 10x longer (see b), preferably 50x (panel c) given the low number of spectral observations at the lowest frequencies (wavenumbers)]] | |||
---- | ---- | ||
Return to [[Preparing_quality-controlled_velocities]] | Return to [[Preparing_quality-controlled_velocities]] |
Revision as of 21:12, 10 July 2022
Once the raw observations have been quality-controlled, then you must split the time series into shorter segments by considering:
- Time and length scales of turbulence
- Stationarity of the segment and Taylor's frozen turbulence hypothesis
- Required statistical significance of the resulting spectra (important if you need to remove motion-induced contamination from the spectra)
Considerations
Measurements are typically collected in the following two ways:
- continuously, or in such long bursts that they can be considered continuous
- short bursts that are typically at most 2-3x the expected largest turbulence time scales (e.g., 10 min in ocean environments)
This segmenting step dictates the minimum burst duration when setting up your equipment. The act of chopping a time series into smaller subsets, i.e., segments, is effectively a form of low-pass (box-car) filtering. The length of the segment in time is usually a more important consideration than detrending the time series when estimating [math]\displaystyle{ \varepsilon }[/math] from the inertial subrange of the final spectra.
The shorter the segment, the higher the temporal resolution of the final [math]\displaystyle{ \varepsilon }[/math] time series, and the more likely the segment will be stationary. However, the spectrum's lowest resolved frequency and final resolution are the inverse of the fft-length, i.e., the duration of the signal used to construct the spectrum. Therefore, the segment must remain sufficiently long such that the lowest wavenumber (frequencies) of the inertial subrange are retained by the spectra. This is particularly important when measurement noise drowns the highest wavenumber (frequencies) of the inertial subrange. Thus, using too short segments may inadvertently render the spectra unusable for deriving [math]\displaystyle{ \varepsilon }[/math] from the inertial subrange by virtue of no longer resolving this subrange as shown in (Fig. 3)
Recommendations
A good rule of thumb for tidally-influenced environments is 5 to 15 min segments, but this may be shorter in certain energetic and fast-moving flows (Fig. 1) and longer in less energetic environments (Fig.2). Are the peaks in the MAVS data vortex shedding from the rings. Check the motion sensors onboard?
Return to Preparing_quality-controlled_velocities